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INTRODUCTION 
In the last two decades since the development 
and adoption of the new ISO10110 optical 
drawing standards [1], a larger number of optical 
surfaces are being specified with surface 
roughness as defined over a limited spatial 
frequency range.  The advantage of this is that, 
in principal, it enables measurements by 
different instruments to provide comparable 
results.  It also enables designers and 
fabricators the ability to target more than one 
spatial frequency range, or to ensure that 
artifacts from a particular fabrication process are 
mimimized. 
 
It seems relatively straight-forward to make 
surface measurements with one or more spatial 
frequency ranges, back out instrument transfer 
functions, calculate the combined PSD (Power 
Spectral Density) data, and then integrate over 
the specified spatial frequency range.  However, 
as I and others have discovered over the last 
two decades, there is no codified method for 
calculating the PSD, let alone for how to deal 
with instrument transfer functions and stitching.   
 
I often get called on as a consultant to ensure 
that the customer is getting a surface that meets 
their specifications.  It’s not as easy as it seems 
to ensure that.  Fabricators are not likely to give 
you the details about how they do their 
calculations.  And interferometer makers don’t 
want to give you the details of how their 
algorithms calculate a PSD.  Plus, if you have to 
combine PSD’s from multiple measurements or 
multiple instruments, it gets even more complex 
to get a satisfactory end result that all can agree 
upon. 
 
My work on this topic began almost 30 years 
ago at Wyko when we were first developing PSD 
calculations.  Over the years, I have had several 
clients ask for my advice in different 
calculations.  What I present in this paper is the 
result of applying methods published in the 
literature as well as reverse-engineering curves 

I’ve received from different vendors.   In the next 
section, I present procedures for calculating 6 
different 1D PSD calculations.  These methods 
will be illustrated using a simple example to 
compare results.  The paper ends with a short 
discussion. 
 
What this paper does not cover are stitching 
methods, and methods of measuring and 
accounting for instrument transfer functions.  
We’ll save those for another day. 
 
METHODS OF CALCULATING PSD 
To calcuate the surface roughness (rms or Sq) 
of a surface over a specified spatial frequency 
range, we need to integrate the PSD between 
the limits of this range.   
 
The 2D PSD 
Rather than writing out this theory 
mathematically, the procedures will be outlined 
in pseudocode: 
1. Read in the phase map 

a. Account for aspect ratio 
b. Transform to square pixels 
c. For simplicity arrays have even numbers 

of square pixels for these calculations 
2. Replace bad data point with NaN (not a 

number) 
3. Remove Zernike terms 

a. Make data zero mean 
b. Replace outliers >±5X rms with NaN  

4. Specify the clear aperture 
5. Window the data 

a. Gaussian window if circular 
b. 2D Hann window if rectangular 
c. Make sure edge of window coincides 

with edge of data aperture 
6. Zeropad if desired 
7. Calculate 2D PSD using 

 
PSD_2D=abs(fftshift(fft2(ifftshift(map)))).^2/PSD_area 
 
Where… 
 
Spatial frequency interval = 1/ diam_PSD_array 
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Lowest spatial frequency = 1/ diam_PSD_array 
Highest spatial frequency = 1/pixel_spacing 
 
8. Scale the PSD 

a. Area under the PSD = rms^2 
b. Because of Parseval’s theorem this 

becomes 
 

rms_PSD_2D = sqrt(sum(PSD(:)) * df^2 / (4 * pi^2)) 
 

c. The rms of the original data after terms 
removed and aperture applied is used 
accounting for bad pixels 

d. Each 1D or 2D PSD is scaled this way 
to integrate over spatial frequency and 
obtain the band-limited Sq (or rms) 

 
Here is an example for a flat mirror measured in 
a Fizeau interferometer. All calculations 
performed in Matlab. FIGURE 1 shows the 
phase map as measured.   large coated flat with hole 2.opd
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FIGURE 1.  This phase map of a flat mirror has 
496x496 pixels and was taken with a Fizeau 
interferometer.  The artifact at 3 o’clock is a pit in 
the surface.  The other missing data points 
(white dots at 11 o’clock) are from specs of dirt 
on the surface.  These data get replaced by NaN 
(not a number). 
 
After the Seidel Zernike terms (the first 8 
“Fringe” terms plus the mean [2]) are removed, 
we are left with the residual phase map in 
FIGURE 2.  FIGURE 3 shows the Gaussian 
damping window in the top plot, and the 
windowed phase data are shown in the bottom 
plot.  NaN values have been replaced with zero 
(the mean value).  Because of how the window-
damping function works, the data are zero at the 
edges of the array.  This will prevent ringing. 
 
FIGURE 4 is a plot of the 2D PSD scaled so that 
the total power in the plot sums to the square of 
the rms of the data. 
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FIGURE 2.  Residual phase map after the Seidel 
Zernike terms are removed. 
 Standard Gaussian window
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FIGURE 3.  (Top) Circular Gaussian damping 
window function. (Bottom) Windowed residual 
phase data. 
 
Methods of producing 1D PSD from 2D PSD 
Now that we have a 2D PSD we can process 
this to find band-limited rms specifications.  I 
want to point out that this is not something that’s 
well-defined in practice.  We could do this 
directly from the 2D PSD, but typically we look at 
1D PSD plots.  And therein is the crux.  What’s 
the best way to do this? 
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2D PSD Scaled [total power = rms 2] (nm2/mm)
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FIGURE 4.  Two-dimensional PSD of windowed 
data in FIGURE 3.  This has been scaled so that 
the total power = rms^2 of the residual data set 
in FIGURE 2. 
 
After doing a literature search and talking to a lot 
of different vendors, I have found that there are 
as many different ways to do this [3-8].  I began 
to try the different published and stated methods 
on the same datasets, and found that they do 
not agree.  No wonder we have difficulty 
comparing results.  In this section, I will outline a 
number of different ways in which we can 
translate 2D PSD data into 1D PSD data.   
 
Averaging rows (or columns) of 2D PSD 
For this technique, after the 2D PSD is 
calculated, all the rows (or all the columns) of 
the 2D PSD are averaged and folded over so 
you see the positive spatial frequencies. The 
scaling is such that the integral (sum) under the 
1D PSD plot equals the rms^2 (or Sq). 
 
This technique has been in the Wyko/Veeco 
software for the last 3 decades.  This method 
was developed for looking at surface roughness 
with an interferometric optical profiler 
(microscope) assuming you have a rectangular 
array of data.   
 
Averaging 1D PSDs of each row (or column)  
This provides comparable data to taking the 1D 
PSD of each row (or column) of data in the 
original dataset and then averaging all the rows 
together.  Elson and Bennett outline this method 
in their work [3]. 
 
It needs to be noted that when you have data 
with a circular aperture, this may not be the best 
approach.  However, it is still widely used in 
many current commercial software packages.  
 

FIGURE 5 shows a linear Hann window used to 
dampen data when taking the PSDs of individual 
rows (Top) and a plot of the 1D PSDs of each 
row in an array. 
 Hann window
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1D PSDs of Rows[total power = rms2] (nm2/mm)
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FIGURE 5.  (Top) Linear Hann damping window 
function. (Bottom) 1D PSDs of each row of data 
in FIGURE 2. 
 
FIGURE 6 shows 6 different types of 1D PSD 
plots, two of which I have described so far.  
 
Fat rows of 2D PSD 
Because of the inconsistency of the previous 2 
techniques with circular apertures, Zygo in their 
MetroPro software [9] have been using “fat” 
rows for a 1D PSD estimate.  Single rows of the 
2D PSD are too noisy to provide good data, but 
average a few rows (or columns) near the center 
together and you get a better estimate of the 
PSD.   
 
The example shown in FIGURE 6 averages 
2.5% of the rows near the center (for a 496x496 
array that’s about 24 rows).  This technique is 
more consistent between data sets that have 
circular or rectangular apertures.  However, this 
estimate can end up missing some features 
depending upon orientation unless radial slices 
at different orientations are considered. It tends 
to be quite a bit noisier and provides a lower 
estimate than other techniques. 
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FIGURE 6.  One-dimensional PSD plots of 
FIGURE 2 data set. This has been scaled so 
that the total power = rms^2 for each curve. 
 
Radial integral of 2D PSD 
This method appears in work from JPL [7]. They 
take a radial slice from the center to the edge of 
the 2D PSD and rotate it around the center to 
create an average of the values for each radius. 
This provides a much less noisy version of a 
slice out of the 2D PSD.  It will average features 
that change with the azimuth,  but it’s good for 
circularly symmetric optics.  In FIGURE 6 you 
can see that this estimate is much lower than 
the other techniques for higher spatial 
frequencies. 
 
Radial sum of 2D PSD 
Because of the issues with having a low 
estimate (and thereby likely underestimating the 
actual values) in the method above, this method 
using a sum rather than an average was 
developed [8].  It is another technique that is 
used for circularly symmetric optics with circular 
apertures. However, because there are so few 
points at low spatial frequencies, this estimate is 
not good at low spatial frequencies.  At mid- and 
high-spatial frequencies it comparable to the 
other techniques and tends to be higher at the 
high-spatial frequencies (see FIGURE 6). 
 
Chordal PSD (1D PSDs of all Diameters) 
This is an extension of a method published by 
CSIRO for measurement of the LIGO optics [5].  
For circularly symmetric optics measured on a 
Fizeau interferometer, the PSDs of several 
chord diameters of the data set were calculated 
and then averaged together.  The noise of 
course is reduced as more chords are 
calculated.  Novak [4] suggested for the NIF 
optics that calculating the PSD for 4 chords at 
45° could provide enough information about the 

surface, but without averaging the PSDs of 
individual chords are noisy. 
 
I propose extending this and calculating the 
PSDs of a large number of chordal diameters 
and then averaging them together.  For this 
example, there are as many chords as there are 
rows.  First the data are remapped so that each 
chord is on one row as shown in FIGURE 7 for 
the dataset in FIGURE 2.  FIGURE 8 shows the 
PSDs of each chordal diameter in a row. 
 Chord diameters remapped
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FIGURE 7.  (Top) Each row is a chord at a 
different angle of the data set in FIGURE 2. 
There are as many chords as there are rows. 
(Bottom) After applying a linear Hann window. 
 
In my opinion this method provides a more 
consistent PSD estimate for circularly symmetric 
optics than any of the other methods.  It will 
average out any azimuthal structure just as the 
radial average and radial sum techniques will, 
but this method is more consistent across both 
low- and high-spatial frequency techniques 
when compared to those other 2 techniques, 
and therefore shows promise. 
 
Zero Padding 
Zero padding is another consideration when 
calculating PSDs.  Adding more zero padding 
does reduce ringing and helps to reduce noise.  
FIGURE 9 shows the average of 1D chordal 
diameter PSDs for different amounts of zero 
padding.  The FFT function in Matlab doesn’t 
care whether the array is a power of 2 or not.  
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For these plots, no zeropadding indicates a 
496x496 array.  For zeropad = 512, the data are 
centered in a 512x512 array of zeros.  For 
zeropad = 1024, and 2048, more zeros are 
added.  It is noticeable that as you increase the 
zero padding you get more detail in the 1D PSD 
estimate.  Of course there is a tradeoff with 
calculation time. 
 

1D PSDs of Chords[total power = rms2] (nm2/mm)

-1.5 -1 -0.5 0 0.5 1 1.5

Spatial Freq (1/mm)

-1.5

-1

-0.5

0

0.5

1

1.5

Sp
at

ia
l F

re
q 

(1
/m

m
)

-8

-6

-4

-2

0

2

Lo
g(

PS
D

) [
nm

2 /m
m

]

 
 
FIGURE 8.  1D PSDs of each row of data in 
FIGURE 7.  Each row corresponds to a different 
chordal diameter of FIGURE 2. 
 
DISCUSSION 
It is obvious from the work presented that the 
choice in method used to calculate the 1D PSD 
makes a difference in the result and ultimately 
will change the outcome of a bandlimited 
surface rms (Sq) estimate.   
 
There are many factors that need to be taken 
into account.  Several of them have been 
presented here.  The most obvious is choosing a 
method depending upon whether the data are 
circularly symmetric or have a circular aperture 
versus having a square or rectangular data.  I 
have also shown how PSD estimates can 
change with zero padding.  This study in not 
exhaustive in that I haven’t presented other 
variables such as binning, terms removed, and 
filtering that can affects PSDs.  There is still a lot 
of work to do in this area in order to help codify 
the best methods to use for these calculations.  
Choose carefully. 
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